The Metric Projection on C^{2} Manifolds in Banach Spaces
 Theagenis Abatzoglou
 Department of Mathematics, Iowa State University, Ames, Iowa 50011
 Communicated by Oved Shisha

Received June 17, 1977

Abstract

We study the best approximation of a point x in a Banach space B from a C^{2} manifold. We derive a formula for the radius of curvature at points on the manifold and we use it to obtain a formula for the Frechet derivative of the metric projection onto the manifold.

1. Introduction

We consider a C^{2} manifold M of dimension $k<\infty$ in a Banach space B. We study the metric projection P_{M} of B onto M, defined by $P_{M}(x)=$ $\left\{y \mid y \in M, \inf _{m \in M}\|x-m\|=\|x-y\|\right\}$. In general, $P_{M}(x)$ need not be a singleton; e.g. it may be empty or consist of more than one point. To avoid such cases we restrict our attention to the set $(\bar{D})^{c}$, the complement of the closure of D, where $D=\left\{x \mid x \in B\right.$ and $P_{M}(x)$ is not a singleton $\}$.

The author has studied P_{M} for X a Euclidean space and M a closed C^{2} manifold, see [1]. R. B. Holmes has proved in [6] that P_{M} is a C^{p} map when M is a closed convex set whose boundary is of class C^{p+1} and X is a Hilbert space. In the case that X is finite dimensional, J. R. Rice has established conditions which guarantee that P_{M} is a singleton at x (and hence continuous there); see [7]. Other authors, [3], [4], [8], use the radius of curvature of the manifold to determine whether P_{M} is a singleton at x.
Our goal in this paper is to show that P_{M} is C^{1} on $(\bar{D})^{c}$ and to find the dependence of $P_{M}^{\prime}(x)$ on the curvature of M at $P_{M}(x)$.

2. Definitions

We assume that the norm of the Banach space is C^{2} and write $\nabla\|x\|$, $\boldsymbol{\nabla}^{\mathbf{2}}\|x\|$ for the first and second Frechet derivatives of the norm at $x . \nabla^{2}\|x\|$ is a bilinear function on $B \times B$ and by $\nabla^{2}\|x\|(y)^{(2)}$ we shall mean $\boldsymbol{\nabla}^{\mathbf{2}}\|x\|(y, y)$.

With regards to the k-dimensional C^{2} manifold M we make the following assumptions:
(1) M is approximatively compact. (This guarantees that P_{M} is continuous on $\left.(\bar{D})^{C}\right)$.
(2) Let M be represented locally by a C^{2} function f. Then $f^{\prime}(b)\left(R^{k}\right)$ is a k-dimensional subspace of B for all b in the domain of f, prime denoting Frechet differentiation.

For m in M we can write $m=f(b)$ and then we define the tangent plane of M at m to be $T_{m}=m+f^{\prime}(b)\left(R^{k}\right)$.

If x, y are in B, we say that x is orthogonal to y if $\left.(d / d t)\|x+t y\|\right|_{t=0}=0$, and " x is orthogonal to a subspace Y of B " means that x is orthogonal to all y in Y. We also define y to be orthogonal to M at m if y is orthogonal to T_{n}.

3. Radius of Curvature

Consider a unit vector v orthogonal to M at m. Assume that for every μ in M sufficiently close to m, there is a $t>0$ with

$$
\|t v\|=\|m+t v-\mu\|
$$

i.e.,

$$
\begin{equation*}
t=\|(m-\mu)+t v\| \tag{3.1}
\end{equation*}
$$

We define the radius of curvature of M at m in the direction v to be

$$
\rho(m, v)=\lim _{\epsilon \in 0} t_{\epsilon} \text { where } t_{\epsilon}=\inf _{0<\|\mu-m\|<\xi}\{t \mid t=\|(m-\mu)+t v\|\}
$$

If the above assumption does not hold, set $\rho(m, v)=\infty$. Let f be a local representation of M around m with $f(a)=m$.

To obtain an explicit formula for $\rho(m, v)$ we further assume that

$$
\nabla^{2}\|v\|\left(f^{\prime}(a)(b)\right)^{(2)}>0 \quad \text { for all } \quad b \neq 0 \text { in } R^{k}
$$

Also to avoid trivalities we shall assume that there are points μ arbitrarily closed to m such that (3.1) holds. We proceed by using Taylor's expansion in (3.1). We have

$$
\begin{aligned}
\|(m-\mu)+t v\|= & \|t v\|+\nabla\|t v\|(m-\mu) \\
& +\frac{1}{2} \nabla^{2}\|t v\|(\mu-m)^{(2)}+o\left(\|\mu-m\|^{2}\right)
\end{aligned}
$$

Since f is a relative homeomorphism around m, if μ is close to m, we can write $\mu=f(c)$ and

$$
\mu=f(c)=f(a)+f^{\prime}(a)(c-a)+\frac{1}{2} f^{\prime \prime}(a)(c-a)^{(2)}+o\left(\|c-a\|^{2}\right)
$$

Hence

$$
\begin{aligned}
\|(m- & \mu)+t v \| \\
= & t+\nabla\|t v\|\left(-f^{\prime}(a)(c-a)-\frac{1}{2} f^{\prime \prime}(a)(c-a)^{(2)}+o\left(\|c-a\|^{2}\right)\right) \\
& +\frac{1}{2} \nabla^{2}\|t v\|\left(-f^{\prime}(a)(c-a)-\frac{1}{2} f^{\prime \prime}(a)(c-a)^{(2)}+o\left(\|c-a\|^{2}\right)\right)^{(2)} \\
& +o\left(\|c-a\|^{2}\right) \\
= & t-\frac{1}{2} \nabla\|v\|\left(f^{\prime \prime}(a)(c-a)^{(2)}\right)+\frac{1}{2 t} \nabla^{2}\|v\|\left(f^{\prime}(a)(c-a)\right)^{(2)} \\
& +o\left(\|c-a\|^{2}\right) .
\end{aligned}
$$

We used the fact that $t v$ is orthogonal to M at $m=f(a)$ to conclude that $\boldsymbol{\nabla}\|t v\|\left(f^{\prime}(a)(c-a)\right)=0$. We also made use of the homogeneity of the norm to replace $\nabla^{2}\|t v\|$ by $(1 / t) \nabla^{2}\|v\|$.

Now we can express (3.1) as

$$
\begin{aligned}
t== & t-\frac{1}{2} \nabla\|v\|\left(f^{\prime \prime}(a)(c-a)^{(2)}\right)+\frac{1}{2 t} \nabla^{2}\|v\|\left(f^{\prime}(a)(c-a)\right)^{(2)} \\
& +o\left(\|c-a\|^{2}\right) .
\end{aligned}
$$

Next we solve for t and obtain

$$
t=\frac{\nabla^{2}\|v\|\left(f^{\prime}(a)(c-a)\right)^{(2)}}{\nabla\|v\|\left(f^{\prime \prime}(a)(c-a)^{(2)}\right)+o\left(\|c-a\|^{2}\right)}
$$

Set $w=(c-a) /\|c-a\|$ and let $c \rightarrow a$; we obtain

$$
\rho(m, v)=\min _{\|w\|=1}\left\{\left.\frac{\nabla^{2}\|v\|\left(f^{\prime}(a)(w)\right)^{(2)}}{\nabla\|v\|\left(f^{\prime \prime}(a)(w)^{(2)}\right)} \right\rvert\, \nabla\|v\|\left(f^{\prime \prime}(a)(w)^{(2)}\right) \geqslant 0\right\}
$$

Remark. Since we are assuming that $\nabla^{2}\|v\|\left(f^{\prime}(a)(w)\right)^{(2)}>0$ for all w of norm 1, if $\nabla\|v\|\left(f^{\prime \prime}(a)(w)^{(2)}\right) \leqslant 0$ for all such w, then $\rho(m, v)=\infty$.

Example. Let γ map R into $L^{p}[0,1], p \geqslant 2$, so that $\gamma(t)$ is a function in $L^{p}[0,1]$ for each t. Assume $\gamma^{\prime}(t) \neq 0$ and that $\gamma^{\prime \prime}(t)$ exists. For a given t we can find a function g in $L^{p}[0,1]$ such that $\|g\|_{p}=1$ and g is orthogonal to γ at $\gamma(t)$; hence $\int_{0}^{1}|g(x)|^{p-2} g(x) \gamma^{\prime}(t)(x) d x=0$. If

$$
\nabla^{2}\|g\|_{p}\left(\gamma^{\prime}(t)\right)^{(2)}=(p-1) \int_{0}^{1}|g(x)|^{p-2}\left|\gamma^{\prime}(t)(x)\right|^{2} d x \neq 0
$$

then

$$
\rho(\gamma(t), g)=\frac{(p-1) \int_{0}^{1}|g(x)|^{p-2}\left|\gamma^{\prime}(t)\right|^{2} d x}{\int_{0}^{1}|g(x)|^{p-2} g(x) \gamma^{\prime \prime}(t)(x) d x}
$$

Observe that when $\int_{0}^{1}|g(x)|^{p-2} g(x) \gamma^{\prime \prime}(t)(x) d x \leqslant 0$, then $\rho(\gamma(t), g)=\infty$ by the previous remark.

Lemma 3.1. Let A, B be real, symmetric $k \times k$ matrices such that $\langle B w, w\rangle=\nabla^{2}\|v\|\left(f^{\prime}(a)(w)\right)^{(2)}$ and $\langle A w, w\rangle=\nabla\|v\|\left(f^{\prime \prime}(a)(w)^{(2)}\right)$ for all w in R^{k}. Then
(a) $B=f^{\prime}(a)^{T} \nabla^{2}\|v\| f^{\prime}(a)$, where $f^{\prime}(a)^{T}$ is the adjoint of $f^{\prime}(a)$.
(b) $A=\left(a_{i j}\right)_{i, j}$ where $a_{i j}=\nabla\|v\|\left(\partial^{2} f / \partial t_{i} \partial t_{j}\right)$.

Proof. (a) We think of $\nabla^{2}\|v\|$ as a bilinear map from $R^{k} \times R^{k}$ into R. We can write $\langle B w, w\rangle=\nabla^{2}\|v\|\left(f^{\prime}(a)(w)\right)^{(2)}=\left\langle\nabla^{2}\|v\|\left(f^{\prime}(a)(w)\right), f^{\prime}(a)(w)\right\rangle$ $=\left\langle f^{\prime}(a)^{T} \nabla^{2}\|v\| f^{\prime}(a)(w), w\right\rangle$. Since B is symmetric, we get $B=$ $f^{\prime}(a)^{T} \nabla^{2}\|v\| f^{\prime}(a)$.
(b) $f^{\prime \prime}(a)(w)^{(2)}=\sum_{i, j}\left[\partial^{2} f(a) / \partial t_{i} \partial t_{j}\right] w_{i} w_{j}$ where we set $a=\left(t_{1}, \ldots, t_{k}\right)$, $w=\left(w_{1}, \ldots, w_{k}\right)$. Then

$$
\begin{aligned}
\langle A w, w\rangle & =\nabla\|v\|\left(f^{\prime \prime}(a)(w)^{(2)}\right)=\nabla\|v\|\left(\sum_{i, j} \frac{\partial^{2} f(a)}{\partial t_{i} \partial t_{j}} w_{i} w_{j}\right) \\
& =\sum_{i, j} \nabla\|v\|\left(\frac{\partial^{2} f(a)}{\partial t_{i} \partial t_{j}}\right) w_{i} w_{j} .
\end{aligned}
$$

Since we assume that A is symmetric, we have $A=\left(a_{i j}\right)_{i, j}=(\nabla\|v\| \times$ $\left.\left(\partial^{2} f(a) / \partial t_{i} \partial t_{j}\right)\right)_{i, j}$.

Observe than we can define the radius of curvature (when positive and finite) by $\rho(m, v)=\min _{\|w\|=1}\{\langle B w, w\rangle|\langle A w, w\rangle|\langle A w, w\rangle>0\}$.

4. The Metric Projection P_{M}

Recall that D is the set of x for which $P_{M}(x)$ is not a singleton. We consider P_{M} on the set $U=(\bar{D})^{C}$. Suppose that $f^{\prime}(a)^{r} \nabla^{2}\|v\| f^{\prime}(a)$ is positive definite for v in X orthogonal to M at $m=f(a)$. Then by using Theorem 5.1 of [3] one can show that U is not empty.

We now state our theorem concerning differentiability of P_{M} in U.
Theorem 4.1. Let X be a Banach space whose norm is C^{2} and let M be an approximatively compact C^{2} manifold in X of dimension $k<\infty$. Let $x(\notin M)$ in U be such that $f^{\prime}(a)^{T} \nabla^{\mathbf{2}}\|v\| f^{\prime}(a)$ is positive definite, where $f(a)=P_{M}(x)$ and $v=\left[x-P_{M}(x)\right] /\left\|x-P_{M}(x)\right\|$. Assume also that $r=\left\|x-P_{M}(x)\right\|<$
$\rho\left(P_{M}(x), v\right)$. Then P_{M} is Frechet differentiable at x and $P_{M}^{\prime}(x)=$ $f^{\prime}(a)(B-r A)^{-1} f^{\prime}(a)^{T} \nabla^{2}\|v\|$ where A, B are as defined in Lemma 3.1.

Proof. Fix y in X and choose t_{0} small enough so that $x+t y$ is in U for all $|t|<t_{0}$. Consider the function F defined by

$$
F\left(t, t_{1}, \ldots, t_{k}\right)=\left\|x+t y-f\left(t_{1}, \ldots, t_{k}\right)\right\|
$$

Observe that F is C^{2} in a neighborhood of $\left(0, \bar{t}_{1}, \ldots, \bar{t}_{k}\right)$ where $f\left(\bar{t}_{1}, \ldots, \bar{t}_{k}\right)=$ $P_{M}(x)$ with $\left(\bar{t}_{1}, \ldots, \bar{t}_{k}\right)=a$.

Now let $G\left(t, t_{1}, \ldots, t_{k}\right)=\left(\partial F / \partial t_{1}, \ldots, \partial F / \partial t_{k}\right) ; G$ is C^{1} in a neighborhood of $\left(0, \bar{t}_{1}, \ldots, \bar{t}_{k}\right)$ and if $P_{M}(x+t y)=f\left(t_{1}, \ldots, t_{k}\right)$, then $\partial F / \partial t_{i}=0, i=1, \ldots, k$. We proceed by computing the Jacobian matrix J_{G} of G with respect to t_{1}, \ldots, t_{k} at $\left(\bar{t}_{1}, \ldots, \bar{t}_{k}\right)$. By a straightforward calculation we obtain,

$$
\begin{aligned}
J_{G}=\left(\frac{\partial^{2} F}{\partial t_{i} \partial t_{j}}\right)_{i, j} & =\frac{1}{r} f^{\prime}(a)^{T} \nabla^{2}\|v\| f^{\prime}(a)-\left(\nabla\|v\|\left(\frac{\partial^{2} f(a)}{\partial t_{i} \partial t_{j}}\right)\right)_{i, j} \\
& =\frac{1}{r} B-A=\frac{1}{r}(B-r A)
\end{aligned}
$$

Recall that if $0<\rho<\infty$, then $r=\left\|x-P_{M}(x)\right\|<\rho\left(P_{M}(x), v\right)=$ $\min _{\|u\| \|=1}\{\langle B w, w\rangle|\langle A w, w\rangle|\langle A w, w\rangle>0\}$. Now if $\langle A w, w\rangle \leqslant 0$ for all w, then $B-r A$ is positive definite because B is so by hypothesis, while if $\langle A w, w\rangle>0$ for some w, then $\langle B w, w\rangle \mid\langle A w, w\rangle \geqslant \rho$ or $\langle B w, w\rangle \geqslant$ $\rho\langle A w, w\rangle$ so that $B-r A=(r / \rho)(B-\rho A)+[(\rho-r) / \rho] B$ is positive definite as for each $w,\langle(B-\rho A) w, w\rangle \geqslant 0$; hence $J_{G}=(1 / r)(B-r A)$ is invertible.

By the implicit function theorem, $t_{i}=t_{i}(t)$ in a neighborhood of ($0, \bar{t}_{1}, \ldots, t_{k}$) and

$$
\left(\frac{\partial t_{1}}{\partial t}, \ldots, \frac{\partial t_{k}}{\partial t}\right)=-\left(\frac{\partial^{2} F}{\partial t_{i} \partial t_{j}}\right)_{i, j}^{-1} \cdot\left(\frac{\partial^{2} F}{\partial t \partial t_{i}}\right)_{i}
$$

Now $\partial^{2} F / \partial t \partial t_{i}=-(1 / r) \nabla^{2}\|v\|\left(y, \partial f / \partial t_{i}\right)$ and $\left(\partial^{2} F / \partial t \partial t_{i}\right)_{i}=-(1 / r) \times$ $f^{\prime}(a)^{T} \nabla^{2}\|v\|(y)$; hence

$$
\left.\left(\frac{\partial t_{1}}{\partial t}, \ldots, \frac{\partial t_{k}}{\partial t}\right)\right|_{t=0}=(B-r A)^{-1} f^{\prime}(a)^{T} \nabla^{2}\|v\|(y) .
$$

Finally since $P_{M}(x+t y)=f\left(t_{1}(t), \ldots, t_{k}(t)\right)$, the chain rule gives

$$
\left.\frac{d}{d t} P_{M}(x+t y)\right|_{t=0}=f^{\prime}(a)(B-r A)^{-1} f^{\prime}(a)^{T} \nabla^{2}\|v\|(y)
$$

This shows that P_{M} has directional derivatives. We also know that P_{M} is a singleton throughout U and, since M is approximatively compact, P_{M} is continuous on U. Now we consider a neighborhood of x contained in U and write $a=f^{-1}\left(P_{M}(x)\right)$. Since f is a local homeomorphism, $f^{\prime}(a), B$ and A are continuous in x and therefore $f^{\prime}(a)(B-r A)^{-1} f^{\prime}(a) \nabla^{2}\|v\|$ is also continuous in x. So we finally have

$$
P_{M}^{\prime}(x)=f^{\prime}(a)(B-r A)^{-1} f^{\prime}(a)^{T} \nabla^{2}\|v\|
$$

Corollary 4.1. If X is a Hilbert space, M is a k-dimensional approximatively compact C^{2} manifold, $x(\notin M)$ is in U and $\left\|x-P_{M}(x)\right\|<\rho\left(P_{M}(x), v\right)$, then

$$
P_{M}^{\prime}(x)=f^{\prime}(a)(B-r A)^{-1} f^{\prime}(a)^{T}
$$

where $B=f^{\prime}(a)^{T} f^{\prime}(a), A=\left(a_{i j}\right)_{i, j}=\left(\left\langle v, \partial^{2} f / \partial t_{i} \partial t_{j}\right\rangle\right)_{i, j}$ and $r=\left\|x-P_{M}(x)\right\| \cdot$
Proof. If y, z belong to a Hilbert space X, then

$$
\boldsymbol{\nabla}^{\mathbf{2}}\|v\|(y, z)=\langle y, z\rangle-\langle v, y\rangle\langle v, z\rangle .
$$

Also $\quad v=\left(x-P_{M}(x)\right) /\left\|x-P_{M}(x)\right\| \perp \operatorname{Range}\left(f^{\prime}(a)\right)$ so that v is in $\operatorname{Ker}\left(f^{\prime}(a)^{T}\right)$. It follows now easily that

$$
P_{M}^{\prime}(x)=f^{\prime}(a)(B-r A)^{-1} f^{\prime}(a)^{T} \nabla^{2}\|v\|=f^{\prime}(a)(B-r A)^{-1} f^{\prime}(a)^{T} .
$$

Corollary 4.2. With the same hypotheses we have

$$
\left\|P_{M}^{\prime}(x)\right\|=\frac{\rho}{\rho-r} \text { where } \frac{1}{\rho}=\max _{\|, w_{\|}=1} \frac{\langle A w, w\rangle}{\langle B w, w\rangle}
$$

Proof. See Corollary 4.1 in [1].
Observe that if M is the sphere $\|z\|=\rho$ in X and $x_{0}(\neq 0)$ is a point of X whose distance from M is r, then $P_{M}\left(x_{0}\right)=\rho x_{0}\left\|x_{0}\right\|$ and

$$
\left\|P_{M}^{\prime}\left(x_{0}\right)\right\|=\frac{\rho}{\rho-r} \text { if } 0<\left\|x_{0}\right\|<\rho
$$

and

$$
\left\|P_{M}^{\prime}\left(x_{0}\right)\right\|=\frac{-\rho}{-\rho-r}=\frac{\rho}{\rho+r} \text { if }\left\|x_{0}\right\|>\rho
$$

Example 4.1. Let M be the set $R_{m}{ }^{n}[0,1]$ of rational functions: M consists of ratios of the form p / q where p is a real polynomial of degree $\leqslant n$ and q is a
real polynomial of degree $\leqslant m$, positive throughout $[0,1]$ with $q(0)=1$. We can represent M by a map f from R^{n+m+1} into $L^{p}[0,1], p \geqslant 2$:

$$
f\left(a_{0}, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right)=\left(\sum_{i=0}^{n} a_{i} x^{i}\right) /\left(1+\sum_{j=1}^{m} b_{j} x^{j}\right)
$$

M is a C^{2} manifold and it is also approximatively compact in $L^{p}[0,1]$. Therefore each g in $L^{p}[0,1]$ has a best approximation from M. Call such a best approximation p_{0} / q_{0}; then it is known (see [2]) that p_{0} / q_{0} is a normal element of M. This means that $\operatorname{dim}\left(p_{0} Q+q_{0} P\right)=n+m+1$ where P and Q are the spaces of real polynomials of degrees $\leqslant n$ and $\leqslant m$, respectively.

We look at the tangent space of M at p_{0} / q_{0} and compute:

$$
\frac{\partial\left(p_{0} / q_{0}\right)}{\partial a_{i}}=\frac{x^{i}}{q_{0}}=\frac{x^{i} q_{0}}{q_{0}^{2}}, i=0,1, \ldots, n
$$

and

$$
\frac{\partial\left(p_{0} / q_{0}\right)}{\partial b_{j}}=-\frac{x^{j} p_{0}}{q_{0}{ }^{2}}, j=1,2, \ldots, m
$$

It is easy to see that the normality of p_{0} / q_{0} guarantees the linear independence of the $n+m+1$ partial derivatives, which implies that M is a non-singular C^{2} manifold around p_{0} / q_{0}.

Also, for $\geqslant 2$ and $g \neq p_{0} / q_{0}$ it can easily be shown that, with

$$
v=\frac{g-\left(p_{0} / q_{0}\right)}{\left\|g-\left(p_{0} / q_{0}\right)\right\|_{L_{p}(0.1)}}
$$

$\boldsymbol{\nabla}^{\mathbf{2}}\|\boldsymbol{v}\|_{p}$ is positive definite on the tangent space of M at p_{0} / q_{0}. So by considerations at the beginning of Section 4, there exist an open set in $L^{p}[0,1]$ such that the metric projection P_{M} into the manifold $M=R_{m}{ }^{n}[0,1]$ of rational functions is differentiable with derivative given by Theorem 4.1.

5. On the Differentiability of the Distance Function

R. Holmes proved in [6] that if M is a Chebyshev, convex set in a Banach space X whose norm is C^{1}, then $d_{M}(x)=\left\|x-P_{M}(x)\right\|$ is also C^{1}. We prove the following

Theorem 5.1. Let X be a Banach space whose norm is Frechet differentiable and let M be a set in X such that there exists an open subset of X where the metric projection P_{M} is a singleton and continuous. Then $d_{M}(x)=\left\|x-P_{M}(x)\right\|$ is $C^{\mathbf{1}}$ on U, and $\nabla d_{M}(x)=\boldsymbol{\nabla}\left\|x-P_{M}(x)\right\|$ there.

Proof. Choose x in V and y in X. Let $t_{0}>0$ be so that $x+t y$ is in V whenever $|t| \leqslant t_{0}$. Consider $F(t)=\left\|x+t y-P_{M}(x+t y)\right\|$ for $|t| \leqslant t_{0} ;$ then $F(t)$ is Lipschitzian and so $F^{\prime}(t)$ exists a.e. for $|t|<t_{0}$. For such a fixed t, choose $h \neq 0$ so that $|t|+|h|<t_{0}$ and set $z=x+t y-P_{M}(x+$ $t y)$. Then

$$
\begin{aligned}
& \frac{F(t+h)-F(t)}{h} \\
&=\frac{\|z+h y\|-\|z\|}{h} \\
&+\frac{\left\|z+h y-P_{M}(x+t y+h y)+P_{M}(x+t y)\right\|-\|z+h y\|}{h} .
\end{aligned}
$$

Assuming $F^{\prime}(t)$ exists, we get

$$
F^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\|z+h y\|-\|z\|}{h}=\nabla\|z\|(y)
$$

because $\left\|z+h y-P_{M}(x+t y+h y)+P_{M}(x+t y)\right\|-\|z+h y\|=\| x+$ $t y+h y-P_{M}(x+t y+h y)\|-\| x+t y+h y-P_{M}(x+t y) \| \leqslant 0$ for small $|h|$.

By hypothesis, $z=x+t y-P_{M}(x+t y)$ is continuous in t; also since the norm of X is Frechet differentiable we can use Theorem 1 of [5] to conclude that $G(t)=\nabla\|z\|(y)$ is continuous in t. Observe that $F^{\prime}(t)=G(t)$ a.e. and also that F is absolutely continuous, hence now we can say that $F^{\prime}(t)=G(t)=\nabla\|z\|(y)$ for all $|t|<t_{0}$. Finally the continuity of $\nabla\|z\|$ at $z=x-P_{M}(x)$ implies that $\nabla d_{M}(x)=\nabla\left\|x-P_{M}(x)\right\|$.

References

1. T. Abatzoglou, The minimum norm projection on C^{2}-manifolds in R^{n}, Trans. Amer. Math. Soc. 243 (1978), 115-122.
2. E. W. Cheney and A. A. Goldstein, Mean square approximation by generalized rational functions, Math. Z. 95 (1967), 232-241.
3. C. K. Chut, E. R. Rozema, P. W. Smith, and J. D. Ward, Metric curvature, folding and unique best approximation, SIAM J. Math. Anal. 7 (1976), 436-449.
4. C. K. Chui and P. W. Smith, Unique best nonlinear approximation in Hilbert spaces, Proc. Amer. Math. Soc. 49 (1975), 66-70.
5. J. R. Giles, On a characterization of differentiability of the norm of a normed linear space, J. Austral. Math. Soc. 12 (1971), 106-114.
6. R. Holmes, Smoothness of certain metric projections on Hilbert space, Trans. Amer. Math. Soc. 183 (1973), 87-100.
7. J. R. Rice, "Approximation of Functions II," Addison-Wesley, Reading, Mass., 1969.
8. E. R. Rozema and P. W. Smith, Nonlinear approximation in uniformly smooth Banach spaces, Trans. Amer. Math. Soc. 188 (1974), 199-211.
