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We study the best approximation of a point x in a Banach space B from a C'
manifold. We derive a formula for the radius of curvature at points on the mani­
fold and we use it to obtain a formula for the Frechet derivative of the metric
projection onto the manifold.

1. INTRODUCTION

We consider a C2 manifold M of dimension k < 00 in a Banach space B.
We study the metric projection PM of B onto M, defined by PM(x) =

{ y lyE M, infmEM II x - mil = II x - y II}. In general, PM(x) need not be a
singleton; e.g. it may be empty or consist of more than one point. To avoid
such cases we restrict our attention to the set (15)C, the complement of the
closure of D, where D = {x I x E Band PM(x) is not a singleton}.

The author has studied PM for X a Euclidean space and M a closed C2
manifold, see [1]. R. B. Holmes has proved in [6] that PM is a OJ map when
M is a closed convex set whose boundary is of class CPH and X is a Hilbert
space. In the case that X is finite dimensional, J. R. Rice has established
conditions which guarantee that PM is a singleton at x (and hence continuous
there); see [7]. Other authors, [3], [4], [8], use the radius of curvature of the
manifold to determine whether PM is a singleton at x.

Our goal in this paper is to show that PM is CIon (15)C and to find the
dependence of P;',,(x) on the curvature of Mat PM(x).

2. DEFINITIONS

We assume that the norm of the Banach space is C2 and write V II x II,
v 2 11 x II for the first and second Frechet derivatives of the norm at x. v 2 11 x II

is a bilinear function on B X B and by V2 II x 1\ (y)<2) we shall mean
V 2 II x II (y, y).
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With regards to the k-dimensional C2 manifold M we make the following
assumptions:

(I) M is approximatively compact. (This guarantees that PM is
continuous on (me).

(2) Let M be represented locally by a C2 function! Then j'(b)(Rk) is a
k-dimensional subspace of B for all b in the domain of f, prime denoting
Frechet differentiation.

For m in M we can write m = feb) and then we define the tangent plane
of Mat m to be Tm = m + j'(b)(Rk).

If X, yare in B, we say that x is orthogonal to y if (d/dt) II x + ty III t~o = 0,
and "x is orthogonal to a subspace Y of B" means that x is orthogonal to all y
in Y. We also define y to be orthogonal to Mat m if y is orthogonal to Tm .

3. RADIUS OF CURVATURE

Consider a unit vector v orthogonal to Mat m. Assume that for every fl,

in M sufficiently close to m, there is at> 0 with

II tv II = II m + tv - fl, II,
I.e.,

t = II(m - fl,) + tv iI·

We define the radius of curvature of M at m in the direction v to be

p(m, z:) = lim t. where t. = inf {t I t = I!(m - fl,) + tv II} .
•w o<1I1'-mll<.

(3.1)

If the above assumption does not hold, set p(m, v) = 00. Let f be a local
representation of M around m with f(a) = m.

To obtain an explicit formula for p(m, v) we further assume that

V211 v II (f'(a)(b»(2) > 0 for all b =Ie 0 in Rk.

Also to avoid trivalities we shall assume that there are points fl, arbitrarily
closed to m such that (3.1) holds. We proceed by using Taylor's expansion in
(3.1). We have

II(m - fl,) + tv [I = [I tv II + V II tv [I (m - fl,)

+ i V2 11 tv II (fl, - m)<2) + 0(11 fl, - m 11
2).

Sincefis a relative homeomorphism around m, if fl, is close to m, we can write
fl, = fCc) and

fl, = fCc) = f(a) + j'(a)(c - a) + tf"(a)(c - a)<2l + 0(11 c - a In
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Hence

II(m - fL) + tv II

= t + \7 il tv II( -j'(a)(c - a) - ~f"(a)(c - a)(2) + 0(11 c - a 112»)

+ ~ \72 II tv II( - j'(a)(c - a) - ~ f"(a)(c - a)<2) + 0(11 c - a 112) ()

+ 0(11 c - a 11
2

)

= t - ~ \7 II v IIU"(a)(c - a)<2» + 2~ \7211 v IIU'(a)(c - a»(2)

+ 0(11 c - a In

We used the fact that tv is orthogonal to Mat m = f(a) to conclude that
V II Iv II (f'(a)(c - a» = 0. We also made use of the homogeneity of the
norm to replace V211 tv II by (l/t) V211 v II.

Now we can express (3.1) as

I = t _l \7 Ii v IIU"(a)(c - a){2» +-l \7211 V IIU'(a)(c - a»{2)
2 2t

+ 0(11 c - a In

Next we solve for t and obtain

\7211 V IIU'(a)(c - a))<2)
I = \7 II v IIU"(a)(c - a)<2) + 0(11 c - a 11

2)

Set w = (c - a)/II c - a Ii and let c ->- a; we obtain

_ . I\7211 V IIU'(a)(w))<2) I "(2)!
p(m, v) - I~II!\ \7 II v IIU"(a)(w)<2» \7 Ii v IIU (a)(w) ) ~ 0\

Remark. Since we are assuming that v211 v II (f'(a)(w»(2l > °for all w of
norm 1, if V II v II (f"(a)(w)(2» ,,::;; 0 for all such w, then p(m, v) = ro.

EXAMPLE. Let y map R into U[O, 1], p ~ 2, so that yet) is a function in
U[O, 1] for each I. Assume y'(t) =1= °and that y"(t) exists. For a given I
we can find a function g in U[O, 1] such that II g lip = 1 and g is orthogonal
to y at yet); hence J~ Ig(x)IP-2 g(x) y'(t)(x) dx = 0. If

\7211 g lip (y'(t))<2) = (p - 1)r I g(x)IP-2 I y'(t)(x)12 dx =1= 0
o
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(p - 1) J~ I g(x)IP-2
1 y'(t)12dx

p(y(t), g) = J~ Ig(x)IP-2 g(x) y"(t)(x) dx •

Observe that when f~ Ig(x)IP-2 g(x) y"(t)(x) dx ~ 0, then p(y(t), g) = 00 by
the previous remark.

LEMMA 3.1. Let A, B be real, symmetric k x k matrices such that
<Bw, 11') = V2 1[ v II (f'(a)(w))(2) and <Aw, 11') = V II v II (f"(a)(w)(2») for all 11'
in Rk. Then

(a) B = 1'(aY V2 11 v II 1'(a), where 1'(aY is the adjoint of1'(a).

(b) A = (aij)i.j where aij = V II v I[ (o2j/oti otj).

Proof (a) We think of V2 11 v [I as a bilinear map from Rk X Rk into R.
We can write <Bw, 11') = v211 v II (f'(a)(w))(2) = <V2 [I v [I (f'(a)(w)),1'(a)(w))
= <1'(aY V211 v II 1'(a)(w), 11'). Since B is symmetric, we get B =
1'(aY V211 v II 1'(a).

(b) I"(a)(w) (2) = Li.i [021(a)/oti otj] WiWj where we set a = (t1 , ... , tk ),

11' = (WI'"'' Wk)' Then

<A11', 11') = V II v 1I(f"(a)(w)(2») = V II v II(L ~2~~a) wiwj)
i,j ut, utJ

= L V II v 11(~?~a)) 11'i11'j .
i,j ut, utJ

Since we assume that A is symmetric, we have A = (aij);,j = (V II v II X

(021(a)/oti Otj))i.j .
Observe than we can define the radius of curvature (when positive and

finite) by p(m, v) = minllwlH{<Bw, w)/<Aw, 11') I <Aw, 11') > O}.

4. THE METRIC PROJECTION PM

Recall that D is the set of x for which PM(x) is not a singleton. We consider
PM on the set U = (l5)e. Suppose that1'(a)T v211 v [I1'(a) is positive definite
for v in X orthogonal to Mat m = 1(a). Then by using Theorem 5.1 of [3]
one can show that U is not empty.

We now state our theorem concerning differentiability of PM in U.

THEOREM 4.1. Let X be a Banach space whose norm is C2 and let M be an
approximatively compact C2 manifold in X of dimension k < 00. Let x (1= M)
in U be such that 1'(aY V2 11 v 1I1'(a) is positive definite, where 1(a) = PM(x)
and v = [x - PM(x)]/11 x - PM(x)ll. Assume also that r = II x - PM(x)11 <
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p(PM(X), v). Then PM is Frechet differentiable at x and P;'-tCx) =
j'(a)(B - rA)-l j'(a)T v211 v II where A, B are as defined in Lemma 3.1.

Proof Fix y in X and choose to small enough so that x + ty is in U for all
I t I < to . Consider the function F defined by

Observe that F is C2 in a neighborhood of (0, t1,... , tk ) where ]01 ,... , tk ) =
PM(x) with (i1 ,... , tk) = a.

Now let G(t, t1 ,... , tk) = (oF/Ofl ,... , of/otk); G is C1 in a neighborhood of
(0, t1 ,... , tk) and if PM(x + ty) = ](t1 ,... , tk), then OF/ati = 0, i = I, ... , k.
We proceed by computing the Jacobian matrix JG of G with respect to
t1 ,... , tk at (i1 ,... , tk). By a straightforward calculation we obtain,

h = (a~2~t) i,j = ~J'(aY \7211 v 11J'(a) - (\7 II v 11(:Z~~))i,j

1 1= - B - A = - (B - rA).
r r

Recall that if °< P < 00, then r = il x - PM(x)11 < p(PM(x), v)
minllwll=l{<Bw, w)/<Aw, w) 1 <Aw, w) > O}. Now if <Aw, w) ~ °for all w,
then B - rA is positive definite because B is so by hypothesis, while if
<Aw, w) > ° for some w, then <Bw, w)/<Aw, w) ~ p or <Bw, w) ~
p<Aw, w) so that B - rA = (rlp)(B - pA) + [(p - r)lp]B is positive
definite as for each w, «B - pA)w, w) ~ 0; hence h = (llr)(B - rA) is
invertible.

By the implicit function theorem, ti = ti(t) in a neighborhood of
(0, t1 , ... , tk ) and

(
at1 atk ) ( a

2
F )-1 (a

2
F)at ,...,at = - ati at} i.i· at at; i'

Now a2Flat ati = -(llr) V211 v II (y, aflat;) and (a2Flat ati)i = -(1lr) x
J'(a)T v2 11 v II (y); hence

(~: ,... , a:; )It~o = (B - rA)-l J'(aY \7211 v II(Y).

Finally since PM(x + ty) = ](t1(t), ..., (k(t», the chain rule gives

; PM(x + ty)lt~o = J'(a)(B - rA)-l J'(aY \7211 v IICy)
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This shows that PM has directional derivatives. We also know that PM is a
singleton throughout U and, since M is approximatively compact, PM is
continuous on U. Now we consider a neighborhood of x contained in U and
write a = f-l(PM(X». Sincefis a local homeomorphism, f'(a), B and A are
continuous in x and therefore f'(a)(B - rA)-l f'(a) v211 v II is also continuous
in x. So we finally have

P~ix) = f'(a)(B - rA)-l f'(aY \7211 v II.

COROLLARY 4.1. If X is a Hilbert space, M is a k-dimensional approxi­
matively compact C2 manifold, x (if: M) is in U and II x - PM(x)II < p(PM(x), v),
then

P;'t<x) = f'(a)(B - rA)-l f'(aY

where B = f'(aY f'(a) , A = (ai;)i,; = «v, a2j/ati atj ) )i,; and r = II x - PM(x)ll.

Proof If y, z belong to a Hilbert space X, then

v2 11 v II (y, z) = <y, z) - <v, y)<v, z).

Also v = (x - PM(x»/11 x - PM(x)II 1.. Range(f'(a» so that v is in
Ker(f'(ay). It follows now easily that

P:W(x) = f'(a)(B - rA)-l f'(aY \72 II v II = f'(a)(B - rA)-l f'(aY.

COROLLARY 4.2. With the same hypotheses we have

P I <Aw w)II P' (x)11 = -- where - = max ' .
M P - r P Iiwll~1 <Bw, w)

Proof See Corollary 4.1 in [1].
Observe that if M is the sphere II z II = p in X and Xo (#0) is a point of X

whose distance from Mis r, then PM(XO) = pXo/11 Xo II and

II PM(xo)l! = _P- ifO < II X o II < Pp-r

and

II PM(xo)11 = -P = +P if II Xo II > p.
-p - r p r

EXAMPLE 4.1. Let M be the set Rm n[o, 1] of rational functions: M consists
of ratios of the form p /q where p is a real polynomial of degree <.n and q is a
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real polynomial of degree ~m, positive throughout [0, 1] with q(O) = 1.
We can represent M by a map ffrom Rn+m+1 into V'[O, 1], P ~ 2:

M is a C2 manifold and it is also approximatively compact in U[O, 1].
Therefore each gin U[O, 1] has a best approximation from M. Call such a best
approximation Po/qo ; then it is known (see [2]) that Po/qo is a normal element
of M. This means that dime PoQ + qoP) = n + m + 1 where P and Q are
the spaces of real polynomials of degrees ~n and ~m, respectively.

We look at the tangent space of M at Polqo and compute:

and

It is easy to see that the normality ofPolqo guarantees the linear independence
of the n + m + 1 partial derivatives, which implies that M is a non-singular
C2 manifold around Polqo .

Also, for ~2 and g =1= Polqo it can easily be shown that, with

v = g - (Polqo)
II g - (Polqo)IIL.p(O.l)

V2 II v ILl' is positive definite on the tangent space of M at Po/%. So by
considerations at the beginning of Section 4, there exist an open set in D'[O, I]
such that the metric projection PM into the manifold M = Rmn[o, 1] of
rational functions is differentiable with derivative given by Theorem 4.1.

5. ON THE DIFFERENTIABILITY OF THE DISTANCE FUNCTION

R. Holmes proved in [6] that if M is a Chebyshev, convex set in a Banach
space X whose norm is C\ then dM(x) = II x - PM(x)II is also Cl. We prove
the following

THEOREM 5.1. Let X be a Banach space whose norm is Frechet differentiable
and let M be a set in X such that there exists an open subset of X where the
metric projection PM is a singleton and continuous. Then dM(x) = II x - PM(x)il
is CIon U, and VdM(x) = V II x - PM(x)11 there.
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Proof Choose x in V and y in X. Let to > 0 be so that x + ty is in V
whenever I t I ~ to. Consider F(t) = II x + ty - PM(x + ty)11 for I t I ~ to ;
then F(t) is Lipschitzian and so F'(t) exists a.e. for I t I < to' For such a
fixed t, choose h =1= 0 so that I t I+ Ih I < to and set z = x + ty - PM(x +
ty). Then

F(t + h) - F(t)
h

II z + hy II - II zII
h

il z + hy - PM(x + ty + hy) + PM(x + ty)ll- il z + hy Ii
h

Assuming F'(t) exists, we get

F'(t) = lim II z + hy il - II z Ii = v !I z II(y)
h~O h ..

because il z + hy - PM(x + ty + hy) + PM(x + tY)11 - II z + hy II = II x +
ty + hy - PM(x + ty + hy)1I - II x + ty + hy - PM(x + ty)li ~ 0 for small
Ih I.

By hypothesis, z = x + ty - PM(x + ty) is continuous in t; also since
the norm of X is Frechet differentiable we can use Theorem 1 of [5] to
conclude that G(t) = V II z II (y) is continuous in t. Observe that F'(t) = G(t)
a.e. and also that F is absolutely continuous, hence now we can say that
F'(t) = G(t) = V II z II (y) for all I t I < to' Finally the continuity of V II z II
at z = x - PM(x) implies that VdM(x) = V II x - PM(x)ll.
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