The Metric Projection on C^2 Manifolds in Banach Spaces

THEAGENIS ABATZOGLOU

Department of Mathematics, Iowa State University, Ames, Iowa 50011 Communicated by Oved Shisha Received June 17, 1977

We study the best approximation of a point x in a Banach space B from a C^2 manifold. We derive a formula for the radius of curvature at points on the manifold and we use it to obtain a formula for the Frechet derivative of the metric projection onto the manifold.

1. INTRODUCTION

We consider a C^2 manifold M of dimension $k < \infty$ in a Banach space B. We study the metric projection P_M of B onto M, defined by $P_M(x) = \{y \mid y \in M, \inf_{m \in M} || x - m || = || x - y ||\}$. In general, $P_M(x)$ need not be a singleton; e.g. it may be empty or consist of more than one point. To avoid such cases we restrict our attention to the set $(\overline{D})^c$, the complement of the closure of D, where $D = \{x \mid x \in B \text{ and } P_M(x) \text{ is not a singleton}\}$.

The author has studied P_M for X a Euclidean space and M a closed C^2 manifold, see [1]. R. B. Holmes has proved in [6] that P_M is a C^p map when M is a closed convex set whose boundary is of class C^{p+1} and X is a Hilbert space. In the case that X is finite dimensional, J. R. Rice has established conditions which guarantee that P_M is a singleton at x (and hence continuous there); see [7]. Other authors, [3], [4], [8], use the radius of curvature of the manifold to determine whether P_M is a singleton at x.

Our goal in this paper is to show that P_M is C^1 on $(\overline{D})^C$ and to find the dependence of $P'_M(x)$ on the curvature of M at $P_M(x)$.

2. DEFINITIONS

We assume that the norm of the Banach space is C^2 and write $\nabla ||x||$, $\nabla^2 ||x||$ for the first and second Frechet derivatives of the norm at x. $\nabla^2 ||x||$ is a bilinear function on $B \times B$ and by $\nabla^2 ||x|| (y)^{(2)}$ we shall mean $\nabla^2 ||x|| (y, y)$. With regards to the k-dimensional C^2 manifold M we make the following assumptions:

(1) M is approximatively compact. (This guarantees that P_M is continuous on $(\overline{D})^c$).

(2) Let *M* be represented locally by a C^2 function *f*. Then $f'(b)(\mathbb{R}^k)$ is a *k*-dimensional subspace of *B* for all *b* in the domain of *f*, prime denoting Frechet differentiation.

For m in M we can write m = f(b) and then we define the tangent plane of M at m to be $T_m = m + f'(b)(R^k)$.

If x, y are in B, we say that x is orthogonal to y if $(d/dt) || x + ty ||_{t=0} = 0$, and "x is orthogonal to a subspace Y of B" means that x is orthogonal to all y in Y. We also define y to be orthogonal to M at m if y is orthogonal to T_m .

3. RADIUS OF CURVATURE

Consider a unit vector v orthogonal to M at m. Assume that for every μ in M sufficiently close to m, there is a t > 0 with

 $|| tv || = || m + tv - \mu ||,$

i.e.,

$$t = ||(m - \mu) + tv ||.$$
 (3.1)

We define the radius of curvature of M at m in the direction v to be

$$\rho(m, v) = \lim_{\epsilon \downarrow 0} t_{\epsilon} \text{ where } t_{\epsilon} = \inf_{0 < ||\mu - m|| < \epsilon} \{t \mid t = ||(m - \mu) + tv||\}.$$

If the above assumption does not hold, set $\rho(m, v) = \infty$. Let f be a local representation of M around m with f(a) = m.

To obtain an explicit formula for $\rho(m, v)$ we further assume that

$$\nabla^2 \| v \| (f'(a)(b))^{(2)} > 0$$
 for all $b \neq 0$ in \mathbb{R}^k .

Also to avoid trivalities we shall assume that there are points μ arbitrarily closed to *m* such that (3.1) holds. We proceed by using Taylor's expansion in (3.1). We have

$$\|(m-\mu) + tv\| = \|tv\| + \nabla \|tv\| (m-\mu) \\ + \frac{1}{2} \nabla^2 \|tv\| (\mu-m)^{(2)} + o(\|\mu-m\|^2).$$

Since f is a relative homeomorphism around m, if μ is close to m, we can write $\mu = f(c)$ and

$$\mu = f(c) = f(a) + f'(a)(c-a) + \frac{1}{2}f''(a)(c-a)^{(2)} + o(||c-a||^2).$$

Hence

$$\begin{split} \|(m-\mu) + tv \| \\ &= t + \nabla \| tv \| \Big(-f'(a)(c-a) - \frac{1}{2} f''(a)(c-a)^{(2)} + o(\| c-a \|^2) \Big) \\ &+ \frac{1}{2} \nabla^2 \| tv \| \Big(-f'(a)(c-a) - \frac{1}{2} f''(a)(c-a)^{(2)} + o(\| c-a \|^2) \Big)^{(2)} \\ &+ o(\| c-a \|^2) \\ &= t - \frac{1}{2} \nabla \| v \| (f''(a)(c-a)^{(2)}) + \frac{1}{2t} \nabla^2 \| v \| (f'(a)(c-a))^{(2)} \\ &+ o(\| c-a \|^2). \end{split}$$

We used the fact that tv is orthogonal to M at m = f(a) to conclude that $\nabla || tv || (f'(a)(c-a)) = 0$. We also made use of the homogeneity of the norm to replace $\nabla^2 || tv ||$ by $(1/t) \nabla^2 || v ||$.

Now we can express (3.1) as

$$t = t - \frac{1}{2} \nabla || v || (f''(a)(c - a)^{(2)}) + \frac{1}{2t} \nabla^2 || v || (f'(a)(c - a))^{(2)} + o(|| c - a ||^2).$$

Next we solve for t and obtain

$$t = \frac{\nabla^2 \| v \| (f'(a)(c-a))^{(2)}}{\nabla \| v \| (f''(a)(c-a)^{(2)}) + o(\| c-a \|^2)}$$

Set w = (c - a)/||c - a|| and let $c \rightarrow a$; we obtain

$$\rho(m, v) = \min_{\|w\|=1} \left\{ \frac{\nabla^2 \|v\| (f'(a)(w))^{(2)}}{\nabla \|v\| (f''(a)(w)^{(2)})} \ \Big| \ \nabla \|v\| (f''(a)(w)^{(2)}) \ge 0 \right\}$$

Remark. Since we are assuming that $\nabla^2 || v || (f'(a)(w))^{(2)} > 0$ for all w of norm 1, if $\nabla || v || (f''(a)(w)^{(2)}) \leq 0$ for all such w, then $\rho(m, v) = \infty$.

EXAMPLE. Let γ map R into $L^{p}[0, 1]$, $p \ge 2$, so that $\gamma(t)$ is a function in $L^{p}[0, 1]$ for each t. Assume $\gamma'(t) \ne 0$ and that $\gamma''(t)$ exists. For a given t we can find a function g in $L^{p}[0, 1]$ such that $||g||_{p} = 1$ and g is orthogonal to γ at $\gamma(t)$; hence $\int_{0}^{1} |g(x)|^{p-2} g(x) \gamma'(t)(x) dx = 0$. If

$$\nabla^2 \|g\|_p (\gamma'(t))^{(2)} = (p-1) \int_0^1 |g(x)|^{p-2} |\gamma'(t)(x)|^2 dx \neq 0$$

then

$$\rho(\gamma(t), g) = \frac{(p-1)\int_0^1 |g(x)|^{p-2} |\gamma'(t)|^2 dx}{\int_0^1 |g(x)|^{p-2} g(x) \gamma''(t)(x) dx}$$

Observe that when $\int_0^1 |g(x)|^{p-2} g(x) \gamma''(t)(x) dx \leq 0$, then $\rho(\gamma(t), g) = \infty$ by the previous remark.

LEMMA 3.1. Let A, B be real, symmetric $k \times k$ matrices such that $\langle Bw, w \rangle = \nabla^2 ||v|| (f'(a)(w))^{(2)}$ and $\langle Aw, w \rangle = \nabla ||v|| (f''(a)(w)^{(2)})$ for all w in \mathbb{R}^k . Then

(a)
$$B = f'(a)^T \nabla^2 ||v|| f'(a)$$
, where $f'(a)^T$ is the adjoint of $f'(a)$.

(b)
$$A = (a_{ij})_{i,j}$$
 where $a_{ij} = \nabla || v || (\partial^2 f / \partial t_i \partial t_j)$.

Proof. (a) We think of $\nabla^2 || v ||$ as a bilinear map from $\mathbb{R}^k \times \mathbb{R}^k$ into \mathbb{R} . We can write $\langle Bw, w \rangle = \nabla^2 || v || (f'(a)(w))^{(2)} = \langle \nabla^2 || v || (f'(a)(w)), f'(a)(w) \rangle$ $= \langle f'(a)^T \nabla^2 || v || f'(a)(w), w \rangle$. Since B is symmetric, we get $B = f'(a)^T \nabla^2 || v || f'(a)$.

(b) $f''(a)(w)^{(2)} = \sum_{i,j} [\partial^2 f(a) / \partial t_i \partial t_j] w_i w_j$ where we set $a = (t_1, ..., t_k)$, $w = (w_1, ..., w_k)$. Then

$$\langle Aw, w \rangle = \nabla || v || (f''(a)(w)^{(2)}) = \nabla || v || \left(\sum_{i,j} \frac{\partial^2 f(a)}{\partial t_i \partial t_j} w_i w_j \right)$$
$$= \sum_{i,j} \nabla || v || \left(\frac{\partial^2 f(a)}{\partial t_i \partial t_j} \right) w_i w_j .$$

Since we assume that A is symmetric, we have $A = (a_{ij})_{i,j} = (\nabla || v || \times (\partial^2 f(a)/\partial t_i \partial t_j))_{i,j}$.

Observe than we can define the radius of curvature (when positive and finite) by $\rho(m, v) = \min_{\|w\|=1} \{ \langle Bw, w \rangle | \langle Aw, w \rangle | \langle Aw, w \rangle > 0 \}.$

4. The Metric Projection P_M

Recall that D is the set of x for which $P_M(x)$ is not a singleton. We consider P_M on the set $U = (\overline{D})^c$. Suppose that $f'(a)^T \nabla^2 || v || f'(a)$ is positive definite for v in X orthogonal to M at m = f(a). Then by using Theorem 5.1 of [3] one can show that U is not empty.

We now state our theorem concerning differentiability of P_M in U.

THEOREM 4.1. Let X be a Banach space whose norm is C^2 and let M be an approximatively compact C^2 manifold in X of dimension $k < \infty$. Let $x \ (\notin M)$ in U be such that $f'(a)^T \nabla^2 || v || f'(a)$ is positive definite, where $f(a) = P_M(x)$ and $v = [x - P_M(x)]/|| x - P_M(x)||$. Assume also that $r = || x - P_M(x)|| < \infty$

 $\rho(P_M(x), v)$. Then P_M is Frechet differentiable at x and $P'_M(x) = f'(a)(B - rA)^{-1} f'(a)^T \nabla^2 ||v||$ where A, B are as defined in Lemma 3.1.

Proof. Fix y in X and choose t_0 small enough so that x + ty is in U for all $|t| < t_0$. Consider the function F defined by

$$F(t, t_1, ..., t_k) = ||x + ty - f(t_1, ..., t_k)||.$$

Observe that F is C^2 in a neighborhood of $(0, \tilde{t}_1, ..., \tilde{t}_k)$ where $f(\tilde{t}_1, ..., \tilde{t}_k) = P_M(x)$ with $(\tilde{t}_1, ..., \tilde{t}_k) = a$.

Now let $G(t, t_1, ..., t_k) = (\partial F/\partial t_1, ..., \partial F/\partial t_k)$; G is C^1 in a neighborhood of $(0, \bar{t}_1, ..., \bar{t}_k)$ and if $P_M(x + ty) = f(t_1, ..., t_k)$, then $\partial F/\partial t_i = 0$, i = 1, ..., k. We proceed by computing the Jacobian matrix J_G of G with respect to $t_1, ..., t_k$ at $(\bar{t}_1, ..., \bar{t}_k)$. By a straightforward calculation we obtain,

$$J_{G} = \left(\frac{\partial^{2} F}{\partial t_{i} \partial t_{j}}\right)_{i,j} = \frac{1}{r} f'(a)^{T} \nabla^{2} ||v|| f'(a) - \left(\nabla ||v|| \left(\frac{\partial^{2} f(a)}{\partial t_{i} \partial t_{j}}\right)\right)_{i,j}$$
$$= \frac{1}{r} B - A = \frac{1}{r} (B - rA).$$

Recall that if $0 < \rho < \infty$, then $r = ||x - P_M(x)|| < \rho(P_M(x), v) = \min_{||w||=1} \{\langle Bw, w \rangle | \langle Aw, w \rangle > 0 \}$. Now if $\langle Aw, w \rangle \leq 0$ for all w, then B - rA is positive definite because B is so by hypothesis, while if $\langle Aw, w \rangle > 0$ for some w, then $\langle Bw, w \rangle / \langle Aw, w \rangle \geq \rho$ or $\langle Bw, w \rangle \geq \rho \langle Aw, w \rangle$ so that $B - rA = (r/\rho)(B - \rho A) + [(\rho - r)/\rho]B$ is positive definite as for each w, $\langle (B - \rho A)w, w \rangle \geq 0$; hence $J_G = (1/r)(B - rA)$ is invertible.

By the implicit function theorem, $t_i = t_i(t)$ in a neighborhood of $(0, t_1, ..., t_k)$ and

$$\left(\frac{\partial t_1}{\partial t},...,\frac{\partial t_k}{\partial t}\right) = -\left(\frac{\partial^2 F}{\partial t_i \partial t_j}\right)_{i,j}^{-1} \cdot \left(\frac{\partial^2 F}{\partial t \partial t_i}\right)_i.$$

Now $\partial^2 F/\partial t \, \partial t_i = -(1/r) \nabla^2 ||v|| (y, \partial f/\partial t_i)$ and $(\partial^2 F/\partial t \, \partial t_i)_i = -(1/r) \times f'(a)^T \nabla^2 ||v|| (y)$; hence

$$\left(\frac{\partial t_1}{\partial t}, \dots, \frac{\partial t_k}{\partial t}\right)\Big|_{t=0} = (B - rA)^{-1} f'(a)^T \nabla^2 ||v||(y).$$

Finally since $P_M(x + ty) = f(t_1(t), ..., t_k(t))$, the chain rule gives

$$\frac{d}{dt} P_M(x+ty)|_{t=0} = f'(a)(B-rA)^{-1} f'(a)^T \nabla^2 ||v||(y)$$

This shows that P_M has directional derivatives. We also know that P_M is a singleton throughout U and, since M is approximatively compact, P_M is continuous on U. Now we consider a neighborhood of x contained in U and write $a = f^{-1}(P_M(x))$. Since f is a local homeomorphism, f'(a), B and A are continuous in x and therefore $f'(a)(B - rA)^{-1}f'(a) \nabla^2 ||v||$ is also continuous in x. So we finally have

$$P'_{M}(x) = f'(a)(B - rA)^{-1} f'(a)^{T} \nabla^{2} ||v||.$$

COROLLARY 4.1. If X is a Hilbert space, M is a k-dimensional approximatively compact C² manifold, $x \notin M$ is in U and $||x - P_M(x)|| < \rho(P_M(x), v)$, then

$$P'_{M}(x) = f'(a)(B - rA)^{-1}f'(a)^{T}$$

where $B = f'(a)^T f'(a)$, $A = (a_{ij})_{i,j} = (\langle v, \partial^2 f | \partial t_i \partial t_j \rangle)_{i,j}$ and $r = ||x - P_M(x)||$.

Proof. If y, z belong to a Hilbert space X, then

$$\nabla^2 \| v \| (y, z) = \langle y, z \rangle - \langle v, y \rangle \langle v, z \rangle.$$

Also $v = (x - P_M(x))/||x - P_M(x)|| \perp \text{Range}(f'(a))$ so that v is in $\text{Ker}(f'(a)^T)$. It follows now easily that

$$P'_{\mathcal{M}}(x) = f'(a)(B - rA)^{-1} f'(a)^T \nabla^2 ||v|| = f'(a)(B - rA)^{-1} f'(a)^T.$$

COROLLARY 4.2. With the same hypotheses we have

$$\|P'_{M}(x)\| = \frac{\rho}{\rho - r} \text{ where } \frac{1}{\rho} = \max_{\|w\| = 1} \frac{\langle Aw, w \rangle}{\langle Bw, w \rangle}.$$

Proof. See Corollary 4.1 in [1].

Observe that if *M* is the sphere $||z|| = \rho$ in *X* and $x_0 (\neq 0)$ is a point of *X* whose distance from *M* is *r*, then $P_M(x_0) = \rho x_0 / ||x_0||$ and

$$||P'_M(x_0)|| = \frac{\rho}{\rho - r} \text{ if } 0 < ||x_0|| < \rho$$

and

$$\|P'_{\mathcal{M}}(x_0)\| = \frac{-\rho}{-\rho-r} = \frac{\rho}{\rho+r} \text{ if } \|x_0\| > \rho.$$

EXAMPLE 4.1. Let *M* be the set $R_m^n[0, 1]$ of rational functions: *M* consists of ratios of the form p/q where *p* is a real polynomial of degree $\leq n$ and *q* is a

640/26/3-2

real polynomial of degree $\leq m$, positive throughout [0, 1] with q(0) = 1. We can represent M by a map f from \mathbb{R}^{n+m+1} into $L^p[0, 1]$, $p \geq 2$:

$$f(a_0, a_1, ..., a_n, b_1, ..., b_m) = \left(\sum_{i=0}^n a_i x^i\right) / \left(1 + \sum_{j=1}^m b_j x^j\right).$$

M is a C^2 manifold and it is also approximatively compact in $L^p[0, 1]$. Therefore each g in $L^p[0, 1]$ has a best approximation from *M*. Call such a best approximation p_0/q_0 ; then it is known (see [2]) that p_0/q_0 is a normal element of *M*. This means that dim $(p_0Q + q_0P) = n + m + 1$ where *P* and *Q* are the spaces of real polynomials of degrees $\leq n$ and $\leq m$, respectively.

We look at the tangent space of M at p_0/q_0 and compute:

$$\frac{\partial (p_0/q_0)}{\partial a_i} = \frac{x^i}{q_0} = \frac{x^i q_0}{{q_0}^2}, i = 0, 1, ..., n,$$

and

$$\frac{\partial (p_0/q_0)}{\partial b_j} = -\frac{x^j p_0}{q_0^2}, j = 1, 2, ..., m$$

It is easy to see that the normality of p_0/q_0 guarantees the linear independence of the n + m + 1 partial derivatives, which implies that M is a non-singular C^2 manifold around p_0/q_0 .

Also, for ≥ 2 and $g \ne p_0/q_0$ it can easily be shown that, with

$$v = \frac{g - (p_0/q_0)}{\|g - (p_0/q_0)\|_{L_p(0,1)}}$$

 $\nabla^2 || v ||_p$ is positive definite on the tangent space of M at p_0/q_0 . So by considerations at the beginning of Section 4, there exist an open set in $L^p[0, 1]$ such that the metric projection P_M into the manifold $M = R_m^n[0, 1]$ of rational functions is differentiable with derivative given by Theorem 4.1.

5. On the Differentiability of the Distance Function

R. Holmes proved in [6] that if M is a Chebyshev, convex set in a Banach space X whose norm is C^1 , then $d_M(x) = ||x - P_M(x)||$ is also C^1 . We prove the following

THEOREM 5.1. Let X be a Banach space whose norm is Frechet differentiable and let M be a set in X such that there exists an open subset of X where the metric projection P_M is a singleton and continuous. Then $d_M(x) = ||x - P_M(x)||$ is C^1 on U, and $\nabla d_M(x) = \nabla ||x - P_M(x)||$ there. *Proof.* Choose x in V and y in X. Let $t_0 > 0$ be so that x + ty is in V whenever $|t| \leq t_0$. Consider $F(t) = ||x + ty - P_M(x + ty)||$ for $|t| \leq t_0$; then F(t) is Lipschitzian and so F'(t) exists a.e. for $|t| < t_0$. For such a fixed t, choose $h \neq 0$ so that $|t| + |h| < t_0$ and set $z = x + ty - P_M(x + ty)$. Then

$$\frac{F(t+h) - F(t)}{h} = \frac{\|z + hy\| - \|z\|}{h} + \frac{\|z + hy - P_M(x+ty+hy) + P_M(x+ty)\| - \|z+hy\|}{h}$$

Assuming F'(t) exists, we get

$$F'(t) = \lim_{h \to 0} \frac{\|z + hy\| - \|z\|}{h} = \nabla \|z\|(y)$$

because $||z + hy - P_M(x + ty + hy) + P_M(x + ty)|| - ||z + hy|| = ||x + ty + hy - P_M(x + ty + hy)|| - ||x + ty + hy - P_M(x + ty)|| \le 0$ for small |h|.

By hypothesis, $z = x + ty - P_M(x + ty)$ is continuous in t; also since the norm of X is Frechet differentiable we can use Theorem 1 of [5] to conclude that $G(t) = \nabla || z || (y)$ is continuous in t. Observe that F'(t) = G(t)a.e. and also that F is absolutely continuous, hence now we can say that $F'(t) = G(t) = \nabla || z || (y)$ for all $|t| < t_0$. Finally the continuity of $\nabla || z ||$ at $z = x - P_M(x)$ implies that $\nabla d_M(x) = \nabla || x - P_M(x) ||$.

References

- T. ABATZOGLOU, The minimum norm projection on C²-manifolds in Rⁿ, Trans. Amer. Math. Soc. 243 (1978), 115–122.
- 2. E. W. CHENEY AND A. A. GOLDSTEIN, Mean square approximation by generalized rational functions, *Math. Z.* 95 (1967), 232–241.
- 3. C. K. CHUI, E. R. ROZEMA, P. W. SMITH, AND J. D. WARD, Metric curvature, folding and unique best approximation, SIAM J. Math. Anal. 7 (1976), 436–449.
- 4. C. K. CHUI AND P. W. SMITH, Unique best nonlinear approximation in Hilbert spaces, *Proc. Amer. Math. Soc.* 49 (1975), 66–70.
- 5. J. R. GILES, On a characterization of differentiability of the norm of a normed linear space, J. Austral. Math. Soc. 12 (1971), 106-114.
- R. HOLMES, Smoothness of certain metric projections on Hilbert space, Trans. Amer. Math. Soc. 183 (1973), 87-100.
- 7. J. R. RICE, "Approximation of Functions II," Addison-Wesley, Reading, Mass., 1969.
- E. R. ROZEMA AND P. W. SMITH, Nonlinear approximation in uniformly smooth Banach spaces, *Trans. Amer. Math. Soc.* 188 (1974), 199–211.